Batuan Piroklastik

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgSexkjGGDK93uyJfZTCTi-vxQOSkENTflsOfnEcmyNH-RKQFyU7QZxR9kn5yvi4xWhJhTeid5HSzlzY2Uze4KIYx5FgkAzOJPEtQW_1m0arFFpcqrf_uC_71I-UiYaDG6kQXWhb4UX0VE/s1600/New+Picture.png
Selain batuan metamorf, sedimen dan batuan beku terdapat satu lagi jenis batuan yang sangat unik yaitu batuan piroklastik, Kenapa disebut batuan yang unik ?. Hal ini dikarenakan secara genetis, kelompok batuan ini lebih dekat dengan batuan ekstrusif, tetapi secara deskriptif dan cara terjadinya memperlihatkan ciri (struktur dan tekstur) yang mirip dengan kelompok batuan sedimen klastik. Kelompok batuan ini di definisikan sebagai batuan yang dihasilkan (secara langsung) oleh aktifitas erupsi secara eksplosif dari gunung api. Karena mempunyai sifat yang unik, maka terminologi yang digunakan untuk pemerian batuan ini juga khusus.
Batuan piroklastik sangat berbeda teksturnya dengan batuan beku, apabila batuan beku adalah hasil pembekuan langsung dari magma atau lava, jadi dari fase cair ke fase padat dengan hasil akhir terdiri dari kumpulan kristal, gelas ataupun campuran dari kedua-duanya. Sedangkan batuan piroklastik terdiri dari himpunan material lepas-lepas (dan mungkin menyatu kembali) dari bahan-bahan yang dikeluarkan oleh aktifitas gunung api, yang berupa material padat berbagai ukuran (dari halus sampai sangat kasar, bahkan dapat mencapai ukuran bongkah). Oleh karena itu klasifikasinya didasarkan atas ukuran butir maupun jenis butirannya.
Pengamatan petrografi dari batuan piroklastik ini sangat terbatas, oleh karena itu sangat di anjurkan, untuk mempelajari dengan baik dari kelompok batuan piroklastik ini harus dilakukan pengamatan di lapangan, karena keterbatasan yang dimiliki bila hanya dilakukan pengamatan mikroskopi saja. ( Yuwono, 2002)
Contoh dari batuan piroklastik yaitu :

Tuff, Pumis, dan Obsidian
Sabtu, 20 September 2014
Posted by Arriqo Arfaq

Pelapukan Batuan (Weathering)

Pelapukan atau weathering (weather) merupakan perusakan batuan pada kulit bumi karena pengaruh cuaca (suhu, curah hujan, kelembaban, atau angin). Karena itu pelapukan adalah penghancuran batuan dari bentuk gumpalan menjadi butiran yang lebih kecil bahkan menjadi hancur atau larut dalam air. Pelapukan dibagi dalam tiga macam, yaitupelapukan mekanis, pelapukan kimiawi, dan pelapukan biologis.
(Sumber  : http://www.phs.d211.org/science/langerma/Earth%20Science/QOD/2nd%20Semester/Rusty%20Rock.jpg)

1.      Pelapukan Mekanis
Pelapukan mekanis atau sering disebut pelapukan fisis adalah penghancuran batuan secara fisik tanpa mengalami perubahan kimiawi. Penghancuran batuan ini bisa disebabkan oleh akibat pemuaian, pembekuan air, perubahan suhu tiba-tiba, atau perbedaan suhu yang sangat besar antara siang dan malam. Untuk lebih jelasnya bagaimana perubahan itu, perhatikan baik-baik berikut ini:
a. Akibat pemuaian
b. Akibat Pembekuan Air
c. Akibat perubahan Suhu tiba-tiba
d. Perbedaan Suhu yang besar antara Siang dan Malam
2.      Pelapukan Kimiawi
Pelapukan kimiawi adalah pelapukan yang terjadi akibat peristiwa kimia. Biasanya yang menjadi perantara air, terutama air hujan. Tentunya Anda masih ingat bahwa air hujan atau air tanah selain senyawa H2O, juga mengandung CO2 dari udara. Oleh karena itu mengandung tenaga untuk melarutkan yang besar, apalagi jika air itu mengenai batuan kapur atau karst.
Batuan kapur mudah larut oleh air hujan. Oleh karena itu jika Anda perhatikan pada permukaan batuan kapur selalu ada celah-celah yang arahnya tidak beraturan. Hasil pelapukan kimiawi di daerah karst biasa menghasilkan karren, ponor, sungai bawah tanah, stalagtit, tiang-tiang kapur, stalagmit, atau gua kapur.
3.      Pelapukan Biologis

Mungkin Anda pernah melihat orang sedang memecahkan batu. Batu yang besar itu dihantam dengan palu menjadi kerikil-kerikil kecil yang digunakan untuk bahan bangunan. Atau mungkin Anda pernah melihat burung atau binatang lainnya membuat sarang pada batuan cadas, lama kelamaan batuan cadas itu menjadi lapuk. Dua ilustrasi ini merupakan contoh pelapukan biologis.
Pelapukan biologis atau disebut juga pelapukan organis terjadi akibat proses organis. Pelakunya adalah mahluk hidup, bisa oleh tumbuh-tumbuhan, hewan, atau manusia. Akar tumbuh-tumbuhan bertambah panjang dapat menembus dan menghancurkan batuan, karena akar mampu mencengkeram batuan. Bakteri merupakan media penghancur batuan yang ampuh. Cendawan dan lumut yang menutupi permukaan batuan dan menghisap makanan dari batu bisa menghancurkan batuan tersebut
Posted by Arriqo Arfaq

Jenis-Jenis Batuan

Secara umum batuan digolongkan menjadi 3. Yaitu : batuan beku (igneous rocks), batuan sediment (sedimentary rocks), dan batuan metamorfosa/malihan (metamorphic rocks). Batuan-batuan tersebut berbeda-beda materi penyusunnya dan berbeda pula proses terbentuknya.
http://nuggetshooter.ipbhost.com/uploads/gallery/album_19/gallery_26455_19_989200.png
Batuan beku atau sering disebut igneous rocks adalah batuan yang terbentuk dari satu atau beberapa mineral dan terbentuk akibat pembekuan dari magma. Berdasarkan teksturnya batuan beku ini bisa dibedakan lagi menjadi batuan beku plutonik dan vulkanik. Perbedaan antara keduanya bisa dilihat dari besar mineral penyusun batuannya. Batuan beku plutonik umumnya terbentuk dari pembekuan magma yang relatif lebih lambat sehingga mineral-mineral penyusunnya relatif besar. Contoh batuan beku plutonik ini seperti gabro, diorite, dan granit (yang sering dijadikan hiasan rumah). Sedangkan batuan beku vulkanik umumnya terbentuk dari pembekuan magma yang sangat cepat (misalnya akibat letusan gunung api) sehingga mineral penyusunnya lebih kecil. Contohnya adalah basalt, andesit (yang sering dijadikan pondasi rumah), dan dacite 
Batuan sedimen atau sering disebut sedimentary rocks adalah batuan yang terbentuk akibat proses pembatuan atau lithifikasi dari hasil proses pelapukan dan erosi yang kemudian tertransportasi dan seterusnya terendapkan. Batuan sediment ini bias digolongkan lagi menjadi beberapa bagian diantaranya batuan sediment klastik, batuan sediment kimia, dan batuan sediment organik. Batuan sediment klastik terbentuk melalui proses pengendapan dari material-material yang mengalami proses transportasi. Besar butir dari batuan sediment klastik bervariasi dari mulai ukuran lempung sampai ukuran bongkah. Biasanya batuan tersebut menjadi batuan penyimpan hidrokarbon (reservoir rocks) atau bisa juga menjadi batuan induk sebagai penghasil hidrokarbon (source rocks). Contohnya batu konglomerat, batu pasir dan batu lempung. Batuan sediment kimia terbentuk melalui proses presipitasi dari larutan. Biasanya batuan tersebut menjadi batuan pelindung (seal rocks) hidrokarbon dari migrasi. Contohnya anhidrit dan batu garam (salt). Batuan sediment organik terbentuk dari gabungan sisa-sisa makhluk hidup. Batuan ini biasanya menjadi batuan induk (source) atau batuan penyimpan (reservoir). Contohnya adalah batugamping terumbu.
http://nuggetshooter.ipbhost.com/uploads/gallery/album_19/gallery_26455_19_556185.png

Batuan sedimen dibedakan oleh jenis zat pengangkutnya, yaitu :
1.  Batu sediman aeolis : batuan hasil proses pengangkutan oleh angin
2.  Batu sediman aluvial : batuan hasil proses pengangkutan dan pembentukan oleh air yang mengalir. Contoh : delta di muara sungai
3.  Batu sediman marin : batuan hasil proses pengangkutan dan dibentuk oleh air laut. Contoh : sand-dune di pantai
4.  Batu sediman glasial : batuan hasil proses pengangkutan dan pembentukan oleh gletser atau es yang mengalir
Batuan metamorf atau batuan malihan adalah batuan yang terbentuk akibat proses perubahan temperature dan/atau tekanan dari batuan yang telah ada sebelumnya. Akibat bertambahnya temperature dan/atau tekanan, batuan sebelumnya akan berubah tektur dan strukturnya sehingga membentuk batuan baru dengan tekstur dan struktur yang baru pula. Contoh batuan tersebut adalah batu sabak atau slate yang merupakan perubahan batu lempung. Batu marmer yang merupakan perubahan dari batu gamping. Batu kuarsit yang merupakan perubahan dari batu pasir.Apabila semua batuan-batuan yang sebelumnya terpanaskan dan meleleh maka akan membentuk magma yang kemudian mengalami proses pendinginan kembali dan menjadi batuan-batuan baru lagi.
http://nuggetshooter.ipbhost.com/uploads/gallery/album_19/gallery_26455_19_493791.png
Proses-proses tersebut berlangsung sepanjang waktu baik di masa lampau maupun masa yang akan datang. Kejadian alam dan proses geologi yang berlangsung sekarang inilah yang memberikan gambaran apa yang telah terjadi di masa lampau seperti diungkapkan oleh ahli geologi “JAMES HUTTON” dengan teorinya “THE PRESENT IS THE KEY TO THE PAST”
Posted by Arriqo Arfaq

Definisi Petrofisika dan Parameternya

Petrofisika (petro adalah bahasa Latin untuk "rock" dan fisika adalah ilmu alam) adalah cabang dari ahli kebumian (Geoscience) yang mempelajari sifat‐sifat batuan termasuk isi yang terdapat didalamnya meliputi cairan dan bahan pembentuk itu sendiri. Ilmu ini diperlukan untuk melakukan analisa formasi batuan. Di industri oil & gas, sifat fisik batuan sangat penting dipelajari untuk mengetahui karakter reservoar (batuan tempat menyimpan hidrokarbon) sebagai batuan yang layak untuk dilakukan pengeboran ataupun perforasi (produksi) lebih lanjut, Pengambilan data pada lubang bor untuk mengetahui unsur kandungan batuan, dengan memasukan detektor elektronik dan radioaktif pada lubang sumur.

(Sumber Gambar: http://www.ireservoir.com/workflow_petro.html)

Beberapa parameter dalam petrofisik meliputi :
1.Porositas
2. Permeabilitas
3. Saturasi
4. Wettabilitas
5.  Tekanan Kapiler
6. Resistivitas batuan

Berikut ini akan dijelaskan beberapa parameter petrofisik tersebut : Porositas adalah perbandingan antara volume pori-pori dengan volume total batuan, Permeabilitas merupakan besaran yang digunakan untuk menunjukkan seberapa besar kemampuan suatu batuan untuk mengalirkan fluida yang terkandung didalamnya. Saturasi adalah perbandingan kuantitas (volume) suatu fluida dengan pori-pori batuan tempat fluida tersebut berada. Wettabilitas didefinisikan sebagai suatu kecenderungan dari adanya fluida lain yang tidak saling mencampur. Apabila dua fluida bersinggungan dengan benda padat, maka salah satu fluida akan bersifat membasahi permukaan benda padat tersebut, hal ini disebabkan adanya gaya adhesi.
Refferensi:
Ikhsan, A.M. (2010) Petrofisik 1st Week [Internet]. Tersedia dalam: <http://maikhsani.blogspot.com/2010/09/petrofisik-1st-week.html?showComment=1332679574220#c8564143643052177994> [Diakses 21 september 2014 ]
Winata, A.P. (2012) Mencoba Belajar Petrofisika [Internet]. Tersedia dalam: <http://arifpanduwinata.blogspot.com/2012/03/mencoba-belajar-petrofisika.html > [Diakses 21 september 2014 ]
Posted by Arriqo Arfaq

Siklus Batuan (The Rock Cycle)

Rock Cycle Illustrated by Phil Stoffer (2005)

Bagian luar bumi tertutupi oleh daratan dan lautan dimana bagian dari lautan lebih besar daripada bagian daratan. Akan tetapi karena daratan adalah bagian dari kulit bumi yang dapat kita amati langsung dengan dekat maka banyak hal-hal yang dapat pula kita ketahui dengan cepat dan jelas. Salah satu diantaranya adalah kenyataan bahwa daratan tersusun oleh beberapa jenis batuan yang berbeda satu sama lain. Dari jenisnya batuan-batuan tersebut dapat digolongkan menjadi 3 jenis golongan. Mereka adalah : batuan beku (igneous rocks), batuan sediment (sedimentary rocks), dan batuan metamorfosa/malihan (metamorphic rocks). Batuan-batuan tersebut berbeda-beda materi penyusunnya dan berbeda pula proses terbentuknya.
Siklus batuan menggambarkan seluruh proses yang dengannya batuan dibentuk, dimodifikasi, ditransportasikan, mengalami dekomposisi, dan dibentuk kembali sebagai hasil dari proses internal dan eksternal Bumi. Siklus batuan ini berjalan secara kontinyu dan tidak pernah berakhir. Siklus ini adalah fenomena yang terjadi di kerak benua (geosfer) yang berinteraksi dengan atmosfer, hidrosfer, dan biosfer dan digerakkan oleh energi panas internal Bumi dan energi panas yang datang dari Matahari.
Siklus batuan di mulai dari magma yaitu cairan berpijar yang terbentuk dalam mantel bumi, yang merambat keluar ke permukaan bumi melalui rekahan-rekahan yang di sebut Volcano Eruption yang biasa terjadi di Gunung Merapi. Magma tersebut mengalami perubahan suhu (Mendingin) karena lingkungannya dan membentuk Batuan Beku.
Batuan beku atau sering disebut Igneous Rocks adalah batuan yang terbentuk dari satu atau beberapa mineral dan terbentuk akibat pembekuan dari magma. Batuan beku yang terbentuk terbagi atas 2 berdasarkan lingkungan terbentuknya. Yang pertama adalah batuan beku dalam atau Plutonic Rock adalah batuan beku yang terbentuk atau mendingin dalam waktu yang sangat lama karena terbentuk dalam gunung atau korok-korok gunung merapi karena perbedaan suhu lingkungannya tidak terlalu signifikan sehingga terbentuk atau membeku dalam waktu yang relative lama, akibat dari waktu proses terbentuknya maka jenis batuan ini memiliki ciri yaitu Kristal-kristal dalam batuan ini relative besar karena prosesnya yang lama, Contoh batuan beku plutonik ini seperti gabro, diorite, dan granit (yang sering dijadikan hiasan rumah).
Yang kedua adalah batuan beku Ekstrusif atau batuan beku Luar atau batuan beku vulkanik yakni batuan beku yang terbentuk akibat dari magma yang ter-erupsi keluar ke permukaan bumi dan mendingin atau membeku dalam waktu yang sangat cepat karena perbedaan suhu yang sangat signifikan, akibat dari proses terbentuknya yang sangat cepat, ciri dari batuan ini adalah Kristal yang terdapat dalam batuan sangat kecil akibat dari proses terbentuknya yang cepat sehingga tidak  sempat mengalami proses kristalisasi yang sempurna. Contohnya adalah basalt, andesit, Obsidian, dan dacite.
Batuan beku ini dapat langsung meleleh kembali menjadi magma dan kembali ke permukaan bumi apabila mendapat panas yang cukup untuk melelehkan dari lingkungannya, namun dapat membentuk batuan sedimen.
Batuan Sedimen atau sering disebut sedimentary rocks adalah batuan yang terbentuk akibat proses pembatuan atau lithifikasi dari hasil proses pelapukan dan erosi yang kemudian tertransportasi dan seterusnya terendapkan. Batuan sediment ini bias digolongkan lagi menjadi beberapa bagian diantaranya batuan sediment klastik, batuan sediment kimia, dan batuan sediment organik. Batuan sediment klastik terbentuk melalui proses pengendapan dari material-material yang mengalami proses transportasi. Besar butir dari batuan sediment klastik bervariasi dari mulai ukuran lempung sampai ukuran bongkah. Biasanya batuan tersebut menjadi batuan penyimpan hidrokarbon (reservoir rocks) atau bisa juga menjadi batuan induk sebagai penghasil hidrokarbon (source rocks). Contohnya batu konglomerat, batu pasir dan batu lempung. Batuan sediment kimia terbentuk melalui proses presipitasi dari larutan. Biasanya batuan tersebut menjadi batuan pelindung (seal rocks) hidrokarbon dari migrasi. Contohnya anhidrit dan batu garam (salt). Batuan sediment organik terbentuk dari gabungan sisa-sisa makhluk hidup. Batuan ini biasanya menjadi batuan induk (source) atau batuan penyimpan (reservoir). Contohnya adalah batugamping terumbu.
 Batuan Sedimen terbentuk apabila batuan beku tersebut mangalami proses pelapukan akibat dari cuaca yang di alami di lingkungannya, kemudian setelah mengalami pelapukan, hasil dari pelapukan tersebut mengalami transportasi yang dapat melalui erosi tanah, angina atau tertransportasi dalam es atau gletser, kemudian setelah mengalami proses transportasi hasil pelapukan tadi mengalami proses pengendapan. Dalam proses pengendapan ini material yang lebih berat akan mengendap di tempat yang paling bawah sebaliknya material-material yang lebih ringan akan mengendap di atasnya, dari sinilah terbentuknya yang namanya perlapisan tanah. Lapisan yang bawah lama- kelamaan mendapatkan beban yang lebih berat oleh material di atasnya sehingga kandungan airnya tertekan keluar dan akan semakin kompak dan akan mengalami proses sementasi akibat adanya semen seperti lempung dan silica sehingga terbentuklah batuan sedimen.
Batuan sedimen ini dapat langsung mencair menjadi magma dan kembali ke dalam bumi atau dapat termetamorfosis menjadi batuan metamorf apabila mendapat perubahan tekanan dan suhu yang signifikan dari lingkungannya.
Batuan metamorf atau batuan malihan adalah batuan yang terbentuk akibat proses perubahan temperature dan/atau tekanan dari batuan yang telah ada sebelumnya. Akibat bertambahnya temperature dan/atau tekanan, batuan sebelumnya akan berubah tektur dan strukturnya sehingga membentuk batuan baru dengan tekstur dan struktur yang baru pula. Contoh batuan tersebut adalah batu sabak atau slate yang merupakan perubahan batu lempung. Batu marmer yang merupakan perubahan dari batu gamping. Batu kuarsit yang merupakan perubahan dari batu pasir.
Batuan metamorf juga dapat terbentuk melalui batuan beku apabila batuan beku tersebut mendapat perubahan tekanan dan suhu dari lingkungannya yang mampu merubahnya menjadi batuan metamorf. Batuan metamorf tidak merubah kandungan kimia batuan sebelumnya, namun hanya merubah susunan mineral dari batuan sebelumnya yang tidak beraturan menjadi susunan mineral yang sejajar atau memanjang, contohnya perubahan batugranit menjadi batuan metamorf yaknik batugneiss
Proses-proses yang terjadi pada Siklus batuan berlangsung sepanjang waktu baik di masa lampau maupun masa yang akan datang. Kejadian alam dan proses geologi yang berlangsung sekarang inilah yang memberikan gambaran apa yang telah terjadi di masa lampau seperti diungkapkan oleh ahli geologi “JAMES HUTTON” dengan teorinya “THE PRESENT IS THE KEY TO THE PAST”.

REFFERENSI :
Rock Cycle. (2005) [Gambar Online], Sumber dari: <http://geologycafe.com/erosion/rock_cycle_illustrated.html> [Diakses 21 September 2014]
Jurnal Geologi. (2010) Siklus Batuan [Internet]. Tersedia dalam: <http://jurnal-geologi.blogspot.com/2010/02/siklus-batuan.html> [Diakses 21 september 2014 ]
Doddys. (2008) Siklus Batuan [Internet]. Tersedia dalam: <http://doddys.wordpress.com/2008/02/19/rock-cycle-siklus-batuan/> [Diakses 21 september 2014 ]


Posted by Arriqo Arfaq

Kupas Tuntas Lapindo Brantas (3)

Identifikasi menurunan permukaan tanah dengan mengunakan metode Geolistrik konfigurasi Wenner
Jika kita bebicara tentang penurunan permukaan tanah maka akan erat kaitannya dengan proses geologi yang dinamakan deformasi batuan. Deformasi adalah proses perubahan pada tubuh batuan akibat gaya yang bekerja padanya. Perubahan yang terjadi berupa perubahan posisi, bentuk, dan volume. Batuan sedimen dianggap terkena deformasi apabila berada dalam kedudukan yang tidak horizontal (miring/tegak). Kedudukan batuan yang miring dinyatakan dalam notasi strike dan dip.
Deformasi disebabkan oleh gaya atau tekanan yang bekerja pada materi tersebut. Adapun faktor-faktor yang mengontrol terjadinya deformasi suatu materi adalah :
1. Temperatur dan tekanan ke semua arah; pada temperatur dan tekanan yang rendah akan lebih cepat terjadi patahan, pada temperatur dan tekanan yang tinggi akan terjadi lenturan atau bahkan lelehan.
2. Kecepatan gerakan yang disebabkan oleh gaya yang diberikan; gerakan yang cepat dapat menyebabkan patahan, sedangkan gerakan yang lambat dapat menimbulkan lenturan, tergantung dari bahan yang bersangkutan dan dari keadaan-keadaan lain.
3. Sifat material, yang bisa lebih rapuh atau lebih lentur.
Tekanan (Stess) merupakan gaya yang diberikan atau dikenakan pada suatu medan atau area. Tekanan terbagi menjadi tekanan seragam (uniform stress) yaitu gaya yang bekerja pada suatu materi sama atau seragam di semua arah, dan tekanan diferensial atau tekanan dengan gaya yang bekerja tidak sama di setiap arah. Tekanan diferensial terbagi menjadi tensional stress, compressional stress, dan shear stress.
3 (tiga) jenis stress:
- Compression: dihasilkan akibat gaya eksternal yang saling berhadapan dan keduanya saling menekan batuan. Batuan akan mengalami pemendekan (shortening).
- Tension: dihasilkan akibat gaya eksternal yang saling berhadapan dan keduanya saling menjauhi batuan. Batuan akan mengalami pemanjangan.
- Shear: dihasilkan akibat gaya eksternal yang bekerja saling sejajar namun berlawanan arah. Batuan akan mengalami pergeseran antar perlapisan.
Gambar 12. Macam-macam jenis stress

Salah satu dari produk deformasi adalah Sesar (Patahan/ Fault) adalah retakan pada batuan yang melaluinya telah terjadi sejumlah gerakan. Sesar dibagi menjadi tiga macam :
1. Sesar normal
Hanging wall relatif turun terhadap foot wall, bidang sesarnya mempunyai kemiringan yang besar. Sesar ini biasanya disebut juga sesar turun
2. Sesar mendatar
Pergerakan dari sesar ini horizontal. Sesar mendatar ditentukan dengan menghadap bidang sesar, bila bidang didepan bergerak kekiri seperti diagram disebut mendatar sinistal, dan sebaliknya sesar mendatar dekstral.
3. Sesar oblique
Pergerakan dari sesar ini gabungan antara horizontal dan vertikal. Gaya-gaya yang bekerja menyebabkan sesar mendatar dan sesar normal.
4. Sesar translasi
Sesar ini mengalami pergeseran sepanjang garis lurus. Biasanya Hanging wall relatif naik terhadap foot wall, dengan kemiringan bidang sesar besar. Sesar ini biasanya disebut juga sesar naik. Umumnya sesar normal dan sesar naik pergerakannya hanya vertikal, jadi sering disebut sebagai sesar dip-slip.
5. Sesar gunting
Pergerakan dari sesar ini juga sama dengan sesar oblique yaitu horizontal dan vertikal. Sesar yang pergeserannya berhenti pada titik tertentu sepanjang jurus sesar. Gaya yang bekerja sama dengan sesar normal.
Gambar 13. Macam-macam sesar

Pada pembahasan kali ini akan dijelaskan identifikasi patahan di daerah Porong dengan menggunakan Geolistrik konfigurasi Wenner, dimana patahan tersebutlah yang menyebabkan penurunan permukaan tanah. Pada identifikasi kali ini digunakan data-data survei Geolistrik dari Geofisika ITS, penulis hanya menambahi keterangan tenatang deformasi batuan dan penjelasan mengenai metode Geolistrik saja, sementara selebihnya berupa data-data dan gambar dari dasil pengukuran dan interpreatsi Geofisika ITS.
Geolistrik adalah salah satu metode dalam geofisika yang mempelajari sifat aliran listrik di dalam bumi dan bagaimana mendeteksinya. Pendeteksian meliputi pengukuran medan potensial, arus, dan elektromagnetik yang terjadi baik secara alamiah maupun akibat penginjeksian arus ke dalam bumi.
Menurut Hendrajaya dan Idam (1990), metode geolistrik resistivitas merupakan metode geolistrik yang mempelajari sifat resistivitas (tahanan jenis) listrik dari lapisan batuan di dalam bumi. Pada metode ini arus listrik diinjeksikan ke dalam bumi melalui dua buah elektroda arus dan dilakukan pengukuran beda potensial melalui dua buah elektroda potensial. Dari hasil pengukuran arus dan beda potensial listrik akan dapat dihitung variasi harga resistivitas pada lapisan permukaan bumi di bawah titik ukur (Sounding point). Pada metode geolistrik dikenal banyak konfigurasi elektroda, diantaranya yang sering digunakan adalah : konfigurasi Wenner, konfigurasi Schlumberger, konfigurasi Dipol-dipol dan lain-lain.
Metode geolistrik resistivitas didasarkan pada anggapan bahwa bumi mempunyai sifat homogen isotropis. Pada kenyataannya bumi terdiri dari lapisan-lapisan bebatuan dengan nilai resistivitas yang berbeda-beda, sehingga potensial yang terukur dipengaruhi oleh lapisan-lapisan tersebut dan menyebabkan nilai tahanan jenis yang terukur tergantung pada jarak elektroda. Nilai tahanan jenis yang terukur bukanlah tahanan jenis yang sebenarnya melainkan tahanan jenis semu (ρa).
Nilai tahanan jenis dari bahan atau material berbanding terbalik dengan daya hantar listrik (conductivity).

dimana ;
R = tahanan (resistance) dalam ohm
V = beda potensial listrik dalam volt
I = arus listrik yang mengalir dalam ampere.

Konfigurasi Wenner
Metode ini diperkenalkan oleh Wenner (1915). Konfigurasi Wenner merupakan salah satu konfigurasi yang sering digunakan dalam eksplorasi geolistrik dengan susunan jarak spasi sama panjang (r1 = r4 = a dan r2 = r3 = 2a). Jarak antara elektroda arus (C1 dan C2) adalah tiga kali jarak elektroda potensial, jarak potensial dengan titik souding-nya adalah a / 2, maka jarak masing-masing elektroda arus dengan titik sounding-nya adalah 3a / 2 .


Gambar 14. Susunan Elektroda Konfigurasi Wenner

Target kedalaman yang mampu dicapai pada metode ini adalah a / 2. Pada konfigurasi Wenner jarak antara elektroda arus dan elektroda potensial adalah sama (AM = NB = a dan jarak AN = MB = 2a) seperti yang terlihat pada Gambar 13.
Suyarto, dkk. (2003), menjelaskan bahwa pengukuran resistivitas secara umum dilakukan dengan menginjeksikan arus listrik ke dalam bumi dengan menggunakan dua elektroda arus (C1 dan C2), dan pengukuran beda potensial dengan menggunakan dua elektroda tegangan (P1 dan P2). Dari data harga arus (I) dan beda potensial (V), dapat dihitung nilai resistivitas semu (ρa) seperti pada persamaan 2.2.
........................ (2.2)

k adalah faktor geometri yang bergantung pada penempatan elektroda di permukaan yang besarnya :
...........................(2.3)

dengan AM = MN = NB = a
Sehingga faktor geometri untuk konfigurasi Wenner adalah:
             
       
                                              
dengan R adalah besar nilai hambatan yang terukur.
Penelitian ini diakukan di Desa Renokenongo, Kecamatan Porong, Kabupaten Sidoarjo, Jawa Timur. Pada penelitian ini menggunkan 3 lintasan dan berikut ini adalah kordinat masing-masing lintasan tersebut:
LINTASAN 1 112°43’03,2” BT dan 07°31’53,6” LS, Arah E 98° S
LINTASAN 2 112°43’10,2” BT dan 07°31’53,5” LS, Arah N 5° E
LINTASAN 3 112°43’39,3” BT dan 07°31’52,2” LS, Arah E 90° S

Gambar 15. Peta Lokasi Lintasan Penelitian

Desain setiap lintasan pada survei Geolistrik
Gambar 16. Desain Susunan Elektroda

Alat-alat yang digunakan dalam peelitian ini adalah:
A.  1 buah Resistivitymeter Campus Tigre
B.  2 elektroda arus dan 2 elektroda potensial
C.  4 buah palu geologi
D.  2 rol meteran
E.  1 buah kompas
F.  1 buah GPS
G.  1 buah kamera digital
H.  5 buah HT
Gambar 17. Alat-alat untuk survey Geolistrik

Data-data yang sudah terkumpul kemudian diolah dengan menggunakan software Res2dinv, yaitu software yang khusus digunakan untuk mengolah data hasil survei Geolistrik, software tersebut akan menggambarkan lapisan batuan melalui perbedaan warna dari perbedaan resistivitas setiap batuan.

 Gambar 18. Tampilan Program Res2dinv

Gambar 19. Data yang diolah dengan Res2dinv

Berikut ini adalah hasil olahan data geolistrik dengan software Res2dinv dalam bentuk 2 dimensi
Gambar 20. Penampang 2-D Setiap Lintasan

Dari gambar tersebut dapat diketahui patahan-patahan terjadi pada lintasan 1 dan 2.
Posisi Patahan lintasan 1
Titik 43 m = 112°43’04,7” BT dan 07°31’53,8” LS
Titik 57 m = 112°43’04,8” BT dan 07°31’53,9” LS
Titik 77 m = 112°43’05,7” BT dan 07°31’54” LS
Titik 98 m =112°43’06,7” BT dan 07°31’54” LS
Titik 110 m =112°43’06,8” BT dan 07°31’54,1” LS
Titik 125 m =112°43’04,2” BT dan 07°31’54,2” LS
Titik 136 m =112°43’07,6” BT dan 07°31’54,2” LS
Arahnya N 50° E
Posisi Patahan Lintasan 2
Titik 50 m = 112°43’04,7” BT dan 07°31’53,8” LS
Titik 100 m = 112°43’05,7” BT dan 07°31’54” LS
Arahnya N 50° E
Gambar 21. Analisa patahan pada lintasan 1 dan 2

KESIMPULAN
1. Bidang patahan/retakan untuk lintasan 1 berada pada titik 43 m; 57 m; 77 m, 98 m; 110 m; 125 m; 136 m.
2. Bidang patahan/retakan untuk lintasan 2 berada pada titik 50 m; 100 m.
3. Adanya amblesan akibat perubahan porositas di bawah permukaan karena keluarnya massa batuan di sekitar sumur eksplorasi BJP-1 telah menyebabkan patahan dangkal/retakan di desa Renokenongo dan semakin mendekati tanggul maka patahan/retakan semakin banyak.

SARAN
1. Perlu dilakukan penelitian dengan metode geofisika lainnya sehingga dapat dilakukan perbandingan untuk memperoleh hasil yang lebih akurat.
2. Perlu dilakukan penelitian yang berkelanjutan yaitu dengan penambahan titik ukur yang berasosiasi dengan penambahan target kedalaman sehingga dapat diperoleh gambaran bawah permukaan lebih luas.
3. Pengukuran patahan di daerah sekitar lumpur panas Sidoarjo sebaiknya dilakukan secara periodik. Hal ini dilakukan guna mengetahui pola dan tingkat penyebaran patahan di daerah tersebut.

Diakhir pembahasan ini penulis akan menukil sedikit perkataan Ibnu Qoyyim,

“Andaikata kita bisa menggali hikmah Allah yang terkandung dalam ciptaan dan urusanNya, maka tidak kurang dari ribuan hikmah. Namun akal kita sangat terbatas, pengetahuan kita terlalu sedikit dan ilmu semua makhluk akan sia-sia jika dibandingkan dengan ilmu Allah, sebagaimana sinar lampu yang sia-sia dibawah sinar matahari. Dan ini pun hanya kira-kira, yang sebenarnya tentu lebih dari sekedar gambaran ini.”

Daftar Pustaka:
1. Telford, W. M., Geldart, L. P., Sherif, R.E dan Keys, D. D. 1988. Applied Geophysics First Edition. Cambridge University Press. Cambridge.New York
2. Akbar. Ali Azhar. 2007. Konspirasi di Balik Lumpur Lapindo, Dari Aktor Hingga Strategi Kotor.  Galangpress. Yogyakarta.
3. Davies, R.J., Swarbrick, R.E., Evans, R.J., and Huuse, M., 2007. Birth of a Mud Volcano: East Java, 29 Mey 2006. GSA: vol. 17 no. 2, doi: 10.1130/GSATO1702A.1.
4. Novenanto, Anton. 2012. The Lapindo Case by Mainsteam Media. Universitas Brawijaya. Malang
5. Setiawati, Elis. 2009. Kasus Lumpur Lapindo dalam Berita Media Online (Analisis Berita Kasus Lumpur Lapindo di Detik.com). Fakultas Dakwah, UIN Sunan Kalijaga. Yogyakarta.
6. Satrio, dkk. 2012. Studi Asal-Usul lapindo Periode 2007-2012 Menggunakan Isotop Alam. Batan. Yogyakarta.
7. Anonim, Analisis Patahan disekita Tanggul Lumpur Lapindo dengan Metode Geolistrik Konfigurasi Wenner. ITS. Surabaya.
9. Anonim. 2014. Geophysics Field Camp 20014 Handbook. Geofisika UGM. Yogyakarta.
8. Kompas Daily (2006) Lumpur Merusak Areal Sawah. Kompas Daily [accessed May 24, 2009]         http://www2.kompas.com/kompas -cetak/0606/01/jatim/53407.htm.
10. http://rovicky.wordpress.com/2006/08/2 5/seputar lumpur sidoarjo, dampak eksplorasi dan lainnya,    (2012).
11. http://www.crisp.nus.edu.sg/coverages/ mudflow/index_IK_p42.html foto udara daerah Porong,       2012.
12. http://id.wikipedia.org/wiki/Banjir_lumpur_panas_Sidoarjo
13. http://noenkcahyana.blogspot.com/2010/10/di-bawah-sidoarjo-terdapat-gunung.html
14. http://geologi278.blogspot.com/2013/08/fenomena-semburan-lumpur-panas-di.html



Artikel Terkait : Kupas Tuntas Lapindo Brantas (1)                          Kupas Tuntas Lapindo Brantas (2)
4. 
Jumat, 22 Agustus 2014
Posted by Arriqo Arfaq

Kupas Tuntas Lapindo Brantas (2)

Penyebab Semburan Lumpur Sumber 1 (Blog Geolog)
Pada artikelnya, Davies (2007) langsung mengkategorikan fenomena ini sebagai gunung lumpur (Mud Vulcano), Gunung lumpur yang terdapat di Jawa bagian timur pada umumnya terbentuk pada cekungan yang terisi oleh endapan batuan sedimen laut yang cukup tebal, mengandung minyak dan gas bumi. Kemunculan lumpur dalam proses pembentukan gunung di wilayah ini, pada umumnya diakibatkan oleh adanya struktur geologi, seperti lipatan dan sesar serta energi yang mendorongnya sehingga lumpur tersebut dapat mencapai permukaan. Gas bumi bertekanan tinggi yang berada di puncak antiklin dan adanya sesar sebagai zona lemah merupakan faktor penyebab migrasinya fluida atau gas ke permukaan.
Gambar 5. Transisi Gunung Lumpur (Mud Vulcano)

Pada kasus Lapindo semburan gunung Lumpur (Mud Vulcano) dipicu oleh aktivitas pengeboran yang menggunakan tekanan besar pada lapisan limestone. Gunung lumpur bukanlah kejadian baru di Jawa Timur, setidaknya ada dua gunung lumpur aktif: di Sangiran, Purwodadi (Davies, 2007; Mazzini 2007) dan Kalang Anyar (Davies , 2008). Mazzini (2007) memandang hipotesa Davies (2007), tentang semburan yang dipicu oleh aktivitas pengeboran, sebagai inconclusive. Kemudian, Mazzini mengangkat hipotesa semburan dipicu gempa bumi. Bantahan Mazzini itu dibantah kembali oleh Davies (2008) dengan menghadirkan kronologis pengeboran di sumur Banjar Panji -1.
Dalam kronologis itu dapat diketahui bahwa setelah mata bor mencapai kedalaman 1.091 meter Lapindo melanjutkan pengeboran tanpa menggunakan selubung pelindung ( casing) apapun. Pada 27  Mei, selang 10 menit setelah gempa mengguncang Yogyakarta -Jawa tengah pukul 06:02 WIB terjadi loss, masuknya lumpur ke dalam lubang pengeboran. Lapindo meneruskan pengeboran selama 6 jam sampai mencapai kedalaman 2.834 meter. Lapindo memutuskan untuk menghentikan pengeboran dan menarik mata bor ke permukaan tanah.
Ketika bor sudah keluar semua, lumpur mulai mengalir dari lubang. Lapindo berusaha menutup lubang dengan semen dan berhasil. Lumpur tidak lagi keluar dari lubang pengeboran itu. Esok harinya, 28 Mei, terjadi kick, cairan yang mengaliri seluruh lubang bor menendang lapisan tanah di seputar lubang pengeboran yang ternyata tidak cukup kuat menahan tekanan dari cairan itu. Akibatnya, lapisan tanah di sekeliling lubang pengeboran retak, dan cairan itu keluar dari retakan-retakan itu. Kejadian ini disebut sebagai blow out. Davies et al. (2008) menolak argumentasi gempa bumi sebagai penyebab semburan karena “ there were other earthquakes, which were larger, closer and generated stroner shaking, did not intitate an eruption (635).” Singkatnya, kondisi geologis di Sidoarjo dan sekitarnya potensial untuk terjadinya gunung lumpur mengingat ada beberapa gunung lumpur aktif saat ini, yang dibutuhkan adalah pemicunya.
Gambar 6. Semburan Lumpu Lapindo Menenggelamkan Perumahan Warga

Penyebab Semburan Lumpur Sumber 2 (Wikipedia)
Pada awalnya sumur tersebut direncanakan hingga kedalaman 8500 kaki (2590 meter) untuk mencapai formasi Kujung (batu gamping). Sumur tersebut akan dipasang selubung bor (casing ) yang ukurannya bervariasi sesuai dengan kedalaman untuk mengantisipasi potensi circulation loss (hilangnya lumpur dalam formasi) dan kick (masuknya fluida formasi tersebut ke dalam sumur) sebelum pengeboran menembus formasi Kujung.
Sesuai dengan desain awalnya, Lapindo “sudah” memasang casing 30 inchi pada kedalaman 150 kaki, casing 20 inchi pada 1195 kaki, casing (liner) 16 inchi pada 2385 kaki dan casing 13-3/8 inchi pada 3580 kaki (Lapindo Press Rilis ke wartawan, 15 Juni 2006). Ketika Lapindo mengebor lapisan bumi dari kedalaman 3580 kaki sampai ke 9297 kaki, mereka “belum” memasang casing 9-5/8 inchi yang rencananya akan dipasang tepat di kedalaman batas antara formasi Kalibeng Bawah dengan Formasi Kujung (8500 kaki).
Diperkirakan bahwa Lapindo, sejak awal merencanakan kegiatan pemboran ini dengan membuat prognosis (rancangan) pengeboran yang salah. Mereka membuat prognosis dengan mengasumsikan zona pemboran mereka di zona Rembang dengan target pemborannya adalah formasi Kujung. Padahal mereka membor di zona Kendeng yang tidak ada formasi Kujung-nya. Alhasil, mereka merencanakan memasang casing setelah menyentuh target yaitu batu gamping formasi Kujung yang sebenarnya tidak ada. Selama mengebor mereka tidak meng-casing lubang karena kegiatan pemboran masih berlangsung. Selama pemboran, lumpur overpressure (bertekanan tinggi) dari formasi Pucangan sudah berusaha menerobos (blow out) tetapi dapat di atasi dengan pompa lumpurnya Lapindo (Medici).
Setelah kedalaman 9297 kaki, akhirnya mata bor menyentuh batu gamping. Lapindo mengira target formasi Kujung sudah tercapai, padahal mereka hanya menyentuh formasi Klitik. Batu gamping formasi Klitik sangat porous (bolong-bolong). Akibatnya lumpur yang digunakan untuk melawan lumpur formasi Pucangan hilang (masuk ke lubang di batu gamping formasi Klitik) atau circulation loss sehingga Lapindo kehilangan/kehabisan lumpur di permukaan.
Gambar 7. Peta Gunung Lumpur di Jawa Timur

Akibat dari habisnya lumpur Lapindo, maka lumpur formasi Pucangan berusaha menerobos ke luar (terjadi kick). Mata bor berusaha ditarik tetapi terjepit sehingga dipotong. Sesuai prosedur standard, operasi pemboran dihentikan, perangkap Blow Out Preventer (BOP) di rig segera ditutup & segera dipompakan lumpur pemboran berdensitas berat ke dalam sumur dengan tujuan mematikan kick. Kemungkinan yang terjadi, fluida formasi bertekanan tinggi sudah terlanjur naik ke atas sampai ke batas antara open-hole dengan selubung di permukaan (surface casing) 13 3/8 inchi. Di kedalaman tersebut, diperkirakan kondisi geologis tanah tidak stabil & kemungkinan banyak terdapat rekahan alami (natural fissures) yang bisa sampai ke permukaan. Karena tidak dapat melanjutkan perjalanannya terus ke atas melalui lubang sumur disebabkan BOP sudah ditutup, maka fluida formasi bertekanan tadi akan berusaha mencari jalan lain yang lebih mudah yaitu melewati rekahan alami tadi & berhasil. Inilah mengapa surface blowout terjadi di berbagai tempat di sekitar area sumur, bukan di sumur itu sendiri.
Gambar 8. Blowout di Sekitar Sumur

Dalam AAPG 2008 International Conference & Exhibition dilaksanakan di Cape Town International Conference Center, Afrika Selatan, tanggal 26-29 Oktober 2008, merupakan kegiatan tahunan yang diselenggarakan oleh American Association of Petroleum Geologists (AAPG) dihadiri oleh ahli geologi seluruh dunia, menghasilan pendapat ahli: 3 (tiga) ahli dari Indonesia mendukung GEMPA YOGYA sebagai penyebab, 42 (empat puluh dua) suara ahli menyatakan PEMBORAN sebagai penyebab, 13 (tiga belas) suara ahli menyatakan KOMBINASI Gempa dan Pemboran sebagai penyebab, dan 16 (enam belas suara) ahli menyatakan belum bisa mengambil opini. Laporan audit Badan Pemeriksa Keuangan tertanggal 29 Mei 2007 juga menemukan kesalahan-kesalahan teknis dalam proses pemboran.
Dari paparan diatas dapat ditarik kesimpulan bahwa kemungkinan terbesar penyebab semburan lumpur Sidoarjo (Lusi) adalah akibat pengeboran, karena kelelaian dalam proses pengeboran yaitu tidak memasang casing sehingga terjadi blow out (keluarnya semburan lumpur dari titik pengeboran), ditambah lagi hasil konferensi AAPG 2008, yang sebagian besar ahli geologi berpendapat bahwa semburan lumpur lapindo disebabkan dari kesalahan pengeboran yang tidak sesuai SOP, selain itu dari hasil investigasi Departemen Energi dan BP Migas (Sekarang SKK Migas) tanggal 16 Juni 2006 menyetakan bahwa semburan lumpur panas tersebut akibat kesalahan pengeboran bukan akibat gempa Yogyakarta yang terjadi 2 hari sebelum semburan lumpur.
Video 1. Animasi Penutup (Casing) Sumur pada Pengeboran Minyak dan Gas

Dampak Lumpur Lapindo
Semburan awal di tengah sawah mencapai ketinggian 40 -50 meter dari permukaan tanah. Setiap harinya, sekitar 7.000 – 150.000 meter kubik lumpur panas bersuhu 90 derajat celcius meluber ke permu kaan bumi. Untuk tujuan tidak mengakibatkan kepanikan masyarakat, terjadilah negosiasi internal perusahaan yang memutuskan untuk mempublikasikan angka 25.000 meter kubik per hari kepada media (Kompas 3/06/2006). Masih menurut Kompas (19/06/2006), dalam waktu 21 hari saja lumpur sudah menutup sekitar 90 hektar kawasan persawahan, tambak dan perumahan. Dalam waktu satu bulan, luberan lumpur menutupi lebih kurang 200 hektar lahan (Kompas 17/07/2007). Sementara itu, Normile (2006) mencatat bahwa sampai Septembe r 2006, lumpur telah meluberi 240 hektar lahan; membanjiri desa -desa, pabrik-pabrik, tambak udang dan sawah. Tiap hari semakin banyak bangunan (pabrik, sekolah, masjid, toko dan kantor pemerintahan) harus ditinggalkan karena banyaknya volume lumpur yang terus keluar dari perut bumi. Sepuluh pabrik terpaksa menghentikan aktivitasnya (Kompas 19/6/2006), akibatnya lebih dari 1.873 buruh kehilangan pekerjaannya (Santoso, 2007). Ratusan hektar sawah menjadi tidak produktif, bukan hanya karena terendam lumpur tapi juga menutup saluran irigasi bagi sawah yang tak terendam lumpur. Lumpur juga menyerang tambak -tambak. Dalam observasi peneliti di muara Sungai Porong, sedimentasi lumpur telah membentuk sebuah pulau kecil. Pada keadaan pasang di malam hari, “pulau” kecil itu menghalangi air pasang dari Selat Madura sehingga air laut masuk ke tambak -tambak yang dekat dengan bibir pantai. Akibatnya, ikan-ikan berenang ke laut dan hilang (Wawancara Irysad, petani tambak).
Gambar 9. Citra Satelit Lapindo

Dalam wawancaranya di ANTV (05/04/2009), Bakrie mengatakan bahwa Lapindo hanyalah perusahaan kecil dibandingkan seluruh unit usahanya, tapi telah menyebabkan masalah besar baginya karena Lapindo harus membayar lebih dari 3,8 trilliun rupiah (sekitar 421 juta US Dollar).
Laporan BPK RI (2007) menyebutkan sampai Februari 2007 sudah 470 hektar area (229,7 hektar diantaranya sawah padi dan 64,015 hektar adalah sawah tebu) yang terendam lumpur, sementara itu 499,84 hektar lahan terkena dampak rembesan lumpur. Pemerintah dan Lapindo sudah berusaha membangun kolam penampungan lumpur seluas 251,9 hektar (laporan BPK RI, 2007). Masih menurut laporan BPK RI, jumlah pengungsi per 19 Januari 2007 mencapai 14.768 jiwa yang tergabung dalam 4.125 KK. Berdasarkan tanggal pantauan, berarti jumlah itu baru pengungsi dari empat desa yang masuk dalam Peraturan Presiden 14/2007 (Jatirejo, Kedungbendo, Renokenongo dan Siring), dan belum termasuk pengungsi baru dari tiga desa tambahan (Besuki, Pejarakan dan Kedung Cangkring) menurut Perpres 48/2008).
Gambar 10. Semburan Lumpur yang Sampai Sekarang Masih Aktif

Dampak lainnya adalah penurunan permukaan tanah, hal ini disebabkan karena meningkatnya beban lumpur dipermukaan, pada kasus ini akan diteliti dengan menggunakan metode geofisika yaitu metode geolistrik untuk mengetahui patahan yang terjadi dibawah permukaan tanah yang menyebabkan penurunan permukaan tanah.
Gambar 11. Akibat Penurunan Permukaan Tanah Sehingga Banyak Bangunan yang Rusak


                           
                           Kupas tuntas Lapindo Brantas (3)

Posted by Arriqo Arfaq

BRENT Crude Oil

Gold Price

Popular Post

Blogger templates

Date

- Copyright © Young Geoscience -Metrominimalist- Powered by Blogger - Designed by Johanes Djogan -